
Lithium vanadium phosphate LVP
C 5%-Li3V2( PO4 )3
Carbon coated lithium vanadium phosphate (5%C-LVP) lithium battery anode material, strong ionic conductivity, high capacity, high voltage platform, good safety.
Need to customized production.
- Description
- Inquiry
Lithium vanadium phosphate is a kind of polyanionic anode material, which has the advantages of good stability, high safety, high theoretical capacity, high operating voltage and low price.
Lithium vanadium phosphate is a monoclinic structure compound with a higher positive lithium ion diffusion system and a higher discharge voltage (3.6/4.1V). At the same time, due to the addition of carbon in the lithium vanadium phosphate complex, the overall energy density and safety are high, which can not only exclude the shortcomings of lithium cobalt acid and lithium iron phosphate, but also improve the electrical conductivity [1]. However, vanadium material has the disadvantages of difficult extraction of precursor, high energy loss and high toxicity, so it is very important to analyze the application of graphene in the preparation of lithium vanadium phosphate for lithium ion batteries.
Lithium vanadium phosphate cationic and anion doping
On the one hand, the lithium vanadium phosphate/graphene complex crystal is a three-dimensional framework, which mainly includes phosphate tetrahedron and octahedron. Since lithium ions can be freely diffused within the crystal during the charge and discharge process, in order to ensure the electrochemical performance of lithium vanadium phosphate/graphene, the lithium ion diffusion channel in lithium vanadium phosphate materials can be further expanded by adjusting the number of cations or anions of lithium vanadium phosphate/graphene. The commonly used lithium vanadium phosphate/graphene modified cations are mainly manganese ions, barium ions, chromium ions and antimony ions. Taking chromium ion doping modification as an example, lithium carbonate, chromium acetate, ammonium hydrogen phosphate and ammonium metavanadate can be weighed according to the measurement ratio of house type in previous experiments. The mixture is then incorporated into 80mL of deionized water and the acid saturated solution is gradually added. After full stirring, adjust the pH to 7.0 with ammonia. The mixture was then placed in a water bath heated stirring instrument (80°C/3.5h) and an oven (80°C/10h). The modified material is cooled to room temperature in argon and then ground. By adjusting the proportion of chromium acetate, it can be concluded that with the increase of the proportion of chromium acetate, the diffraction peak crystal plane spacing of lithium vanadium phosphate material increases gradually, indicating that the material modification is successful. On the other hand, in the anionic doping of lithium vanadium phosphate/graphene, the main doped materials are chloride ions, fluorine ions and boric acid ions. Taking the addition of chloride ions as an example, the materials of lithium chloride, ammonium hydrogen phosphate, lithium carbonate and ammonium metavanadate can be classified according to the stoichiometric ratio.
Related Products
-
Read MoreQuick View
Rubidium Stearate
Read MoreQuick View -
Read MoreQuick View
Lithium Iodide Trihydrate
CAS no. : 7790-22-9
Molecular formula: H6ILiO3
Molecular weight: 187.8913
Melting point: 73 ℃
Read MoreQuick View -
Read MoreQuick View
Lithium lanthanum titanate
Li (x) La (2/3-x) TiO3
Purity: 4N
We can supply ( LLT ) powder and target material, welcome contact us!
This material used in lithium battery solid electrolyte, ion conductivity superior performance, is the direction of development of lithium batteries.
Read MoreQuick View -
Read MoreQuick View
Potassium Sodium Titanate
KNaTiO3
Sodium potassium titanate is a new additive, the product uses a special process to completely solve the problem of easy absorption of potassium titanate products. Potassium titanate can reduce the arc voltage, stabilize the arc, reduce the splash, the use of superior performance, fine weld. Can be widely used in low hydrogen electrode, AC and DC electrode, and stainless steel electrode and flux cored wire
Read MoreQuick View -
Read MoreQuick View
Aluminum lithium tetrachloride
Other name: Lithium Aluminum Tetrachloride; Lithium tetrachloroaluminate; lithium tetrachloroaluminum; Lithium chloroaluminate (6CI); Aluminum lithium chloride (AlLiCl4)
CAS no. : 14024-11-4
EINECS no. : 237-850-9
Formula: LiAlCl4
Molecular weight: 175.7345
Chemical properties: Water or moisture absorption decomposition
Appearance: White or off-white powder
Read MoreQuick View -
Read MoreQuick View
Cesium iodide
Other name: caesium iodide
CAS no. : 7789-17-5
EINECS no. : 232-145-2
Molecular formula: CsI
Molecular weight: 259.8099
Melting point: 626 ℃
Boiling point: 127 ° C at 760 mmHg
Solubility in water: 74 g / 100 mL (20 ℃)
Vapor pressure: 13.8 mmHg at 25 ° C
Read MoreQuick View -
Read MoreQuick View
Cesium Stearate
Linear molecular: CH3(CH2)16COOCs
Molecular weight: 416.38
Read MoreQuick View -
Read MoreQuick View
Sodium pyroantimonate
CAS no. : 12507-68-5
Molecular formula: NaSb(OH)6
Molecular weight: 246.787
Read MoreQuick View -
Read MoreQuick View
Lithium Iso Propoxide
Other name: Lithium isopropoxide; lithium propan-2-olate
CAS no. : 2388-10-5
Formula: C3H7LiO
Molecular weight: 66.0281
Boiling point: 73 ° C at 760 mmHg
Flash: 11.7 ° C
Vapor pressure: 81.3 mmHg at 25 ° C
Properties: water absorption decomposition, soluble in alcohol, benzene, tetrahydrofuran and other organic solvents.
Read MoreQuick View -
Read MoreQuick View
Potassium Silicate Titanate
Name: Potassium Silicate Titanate
Other name: Fused Potassium Silico-Titanate
Read MoreQuick View